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Abstract: The subject of this study is the influence of dielectric environment on the energies and wave functions of electron in conduction
band of CdSe/ZnS spherical core/shell quantum dots (CSQD) and oscillator strength of 1s → 1p intraband transition. We use two common
approaches to take into account the effect of dielectric matrix, which consist in adding corresponding terms to the electron Hamiltonian. We
perform calculations using effective mass approximation by imposing the corresponding boundary conditions on the values of wave function and
its first derivative for the cases when CSQD is embedded in SiO2 and HfO2 dielectric matrix. The effect of CSQD radius on results is discussed.

Introduction
In the most general sense, quantum dots (QDs)
are physical systems which can be used to confine
electrons inside a small region of space, where the
linear dimensions of that region are of the order
of several nanometers. Quantum dots are usually
practically realized as semiconductor nanocrystals.
CSQDs are quantum dots whose central region (co-
re) is filled with one type of semiconductor mate-
rial (in our case CdSe), and the surrounding layer
(shell) is filled with a different semiconductor ma-
terial (in our case ZnS). The reason for studying
CSQDs is their application in optoelectronics, bio-
imaging, quantum computing [1].

Theory

Energies and wave functions of electron in con-
duction band of CSQD were calculated in effective
mass approximation. The electrons inside the QD
induce bound charges on the surface of the ma-
terial in which the QD is located, so in principle
we have to consider such interactions as well. We
first considered the case when this interaction was
neglected. Therefore, we solve the Schrödinger equ-
ation in which the Hamiltonian has the form:

Ĥ = − ℏ2

2m∗(⃗r)
∆ + V (r) ,

where m∗(⃗r) is the effective mass of the electron:

m∗(⃗r) =

{
m∗

1, 0 < r < R1,

m∗
2, R1 < r < R2,

and:

V (r) =
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∞, r > R2

where R1, R2 are respectively the radius of the core
and radius of the shell, and V0 is a constant.
Due to the symmetry of the system, we can se-

parate variables as follows:

ψnlm(⃗r) = Pnl(r)Ylm(θ, ϕ) ,

where Ylm(θ, ϕ) are the known spherical harmonics,
and the problem is reduced to solving the radial Sc-
hrödinger equation for radial wave function Pnl(r)
and corresponding energy Enl.
After solving the equation, we apply boundary

conditions for the continuity of the wave function,
as well as the Ben Daniel-Duke condition [2]:
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.

Using these equations, we obtain energies and di-
pole matrix element numerically.
Next, we also took the interaction between the

electron and the bound charges on the surface of
the CSQD into account. There are two main met-
hods used in the literature to describe this interac-
tion, using either additional potential term Σ [3]:
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1
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)
+
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[
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]
or additional potential term W (r) [4]:

W (r) =
e2(ε1 − ε2)

8πε1R1
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r2k

R2k
2

.

Here, ε1 and ε2 are dielectric constants of CSQD
material and dielectric environment, respectively.
First, we include the Σ potential in the Schrödin-

ger equation, and we solve it analytically. The re-
quired energies and the dipole matrix element of
the transition are again determined by the same
numerical methods as in the previous case. Final-
ly, in the case of the W (r) potential, we use first
order perturbation theory and solve the integrals
numerically.

Figure 1: Energies of 1s and 1p states and oscillator strength of 1s→1p intraband transition in CdSe/ZnS spherical CSQD as functions of quantum dot radius.

Results and discussion
The following values of the parameters were used in calculation [5]: m∗

1 = 0.13m0,
m∗

2 = 0.28m0, V0 = 1.05 eV, εr(CdSe) = 9.7, εr(ZnS) = 8.4, εr(SiO2) = 3.9 and
εr(HfO2) = 25.

First, we include the Σ potential in the Schrödinger equation, and we solve it
analytically. The required energies and the dipole matrix element of the transition
are again determined by the same numerical methods as in the previous case. Fi-
nally, in the case of the W (r) potential, we use first order perturbation theory and
solve the integrals numerically.

We found that wave functions are the same in both models as for the plane Cd-
Se/ZnS spherical CSQD. The model with term Σ in the Hamiltonian gives energy
levels that are shifted up or down depending on dielectric constant of dielectric
matrix and predicts the same value for the oscillator strength as for the plane
quantum dot. On the other hand, inclusion of term W into Hamiltonian gives
different energies and oscillator strength in comparison with the plane CdSe/ZnS
spherical CSQD. Moreover, both models give the very similar energy values.

Finally, in our comparison of the two methods we can conclude that it is mo-
re precise to use the W (r) potential than the Σ potential. Instead of looking at
first order perturbation theory, it would also be preferable to numerically solve the
Schrödinger equation with the W (r) potential from the start.
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