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Abstract. We analyze three types of rogue wave (RW) clusters for the quintic nonlinear Schrödinger equation (QNLSE) on a flat background. The exact 

QNLSE solutions are generated using the Darboux transformation (DT) scheme and they are composed of the higher-order Akhmediev breathers (ABs) 
and Kuznetsov-Ma solitons (KMSs). We analyze the dependence of their shapes and intensity profiles on the eigenvalues and evolution shifts in the DT 
scheme and on three real quintic parameters. The first type of RW clusters, characterized by the periodic array of peaks along the evolution or transverse 
axis, is obtained when the condition of commensurate frequencies of DT components is applied. The elliptical RW clusters are computed from the 
previous solution class when the first m evolution shifts in the DT scheme of order n are equal and nonzero. For both AB and KMS solutions a periodic 
structure is obtained with the central RW and m ellipses, containing the first-order maxima that encircle the central peak. We show that RW clusters built 
on KMSs are significantly more vulnerable to the application of high values of QNLSE parameters, in contrast to the AB case. We next present non-periodic 
long-tail KMS clusters. They are characterized by the rogue wave at the origin and n tails above and below the central point containing the first-order 
KMSs. We also show that the breather-to-soliton conversion can transform the shape of RW clusters by careful adjustment of the real parts of DT 
eigenvalues, while remaining parameters are left unchanged. 

Quintic 
equation: 

I.   Periodic arrays of RWs composed by Kuznetsov–Ma solitons  

Figure 1:  3D color plots of higher-order Kuznetsov–Ma solitons with commensurate frequency 
components on a uniform background for pure NLSE (α = 0, γ = 0, δ = 0): (a) The second-order DT 

solution with ν = ν1 = 1.1, (b) The third-order DT solution with ν = ν1 = 1.1. 
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II.   Multi-elliptic rogue wave clusters of Akhmediev breathers  and Kuznetsov–Ma solitons (KMS and AB MERWC) 

III.   Long tail rogue wave clusters of Kuznetsov-Ma solitons 

KM solitons are periodic along x-axis:  

Figure 2:  Intensity distributions of the multi-elliptic rogue wave clusters built on the 
higher-order ABs and KMSs. AB MERWC is calculated for n = 7, m = 2, ω = 0.1 , x1 = x2 = 
1, and: (a) α = 0.07, γ = 0, δ = 0, (b) α = 0, γ = 0.07, δ = 0, (c) α = 0, γ = 0, δ = 0.035. The 
insets show the actual appearance of the central RW. KM MERWC is computed for n = 
4, m = 1, υ1 = 1.02 , x1 = 1, and: (d) α = 0.006, γ = 0, δ = 0, (e) α = 0, γ = 0.006, δ = 0, (f) 
α = 0, γ = 0, δ = 0.002. 

Figure 3:  Long tail Kuznetsov-Ma clusters on uniform background for pure NLSE (α 
= 0, γ = 0, δ = 0) and Xj4=106, ω=0.05, υ0=0.1: (a) n=5, m=0, (b) n=5, m=1, (c) n=5, 

m=2, (d) n=6, m=0, (e) n=6, m=1, (f) n=6, m=2. 
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 nth-order DT solution:  , , 1j j j j jr i x t j n    

Main frequency (first DT component): 

Commensurate frequencies: Arbitrary υ1:  

Imaginary parts of DT 
eigenvalues for j ≥ 2: 

Eigenvalues 
for KMS: 

Evolution shifts: 

●  KMS/AB of order n-2m at ellipses’ center  ●  m ellipses around the peak  ●  2n-1 KMS1/AB1 on outer ellipse and 4 KMS1/AB1 less on each following ring towards the center 

Required: 
 

1. noncommensurate 
frequencies, 

 

2. evolution shifts 

●  KMS of order n-2m at (0,0) 
origin 
 

●  m tails with KMS1 above 
and below 
 

●  m (m-1) KM1 loops above 
(below) just for even n 

Eigenvalues 
for AB: 

x – evolution variable, t – transverse variable, Ψ= Ψ(x,t) is a complex function 

IV. Breather-to-soliton conversion (BTSC): 

Figure 4 up: AB MERWC for n = 6, m = 2, ω = 0.1, x1 = x2 = 1, α = 0.13, 
γ = 0.03, δ = -0.02. Real parts are: (a) = 0, (b) ≠ 0. 

 

Figure 4 down: KMS long tail clusters for n = 4, m = 0, ω = 0.05, 
υ0=0.02, α = 0.13, γ = 0.03, δ = -0.02. Real parts are: (a) = 0, (b) ≠ 0. 

BTSC: 


