
The nature, origin, and properties of the one- and two-
dimensional optical rogue waves 

Stanko N. Nikolić 1,2,*, Sarah B. A. Alwashahi 3, Najdan B. Aleksić 4, Omar A. Ashour 5, Siu A. Chin 6, Milivoj R. Belić 2 

1Institute of Physics Belgrade, University of Belgrade, Serbia 
2Science program, Texas A&M University at Qatar, Doha, Qatar 

3Faculty of Physics, University of Belgrade, Serbia 
4Moscow State Technological University “STANKIN”, Moscow, Russia 

5Department of Physics, University of California, Berkeley CA 94720, USA 
6Department of Physics and Astronomy, Texas A&M University, College Station TX 77843, USA 

  P
H

O
TO

N
IC

A
 2

0
2

1
 ::

: 2
3

 A
u

gu
st

 -
 2

7
 A

u
gu

st
 2

0
2

1
, B

el
gr

ad
e,

 S
er

b
ia

 
 

References: 
 

[1] S. N. Nikolic, O. A. Ashour, N. B. Aleksic, M. R. Belic, S. A. 
Chin, Nonlinear Dyn. 95, 2855 (2019). 
  
[2] S. N. Nikolic, O. A. Ashour, N. B. Aleksic, Y. Zhang, M. R. 
Belic, S. A. Chin, Nonlinear Dyn. 97, 1215 (2019). 

Abstract. The generating mechanism of optical rogue waves (RWs) is the modulation instability (MI). It is the nonlinear optical process in 

which a weak perturbation of the background pump wave produces an exponential growth of higher order sidebands that constructively 
interfere to build RWs. We produce RWs in numerical simulations of the cubic nonlinear Schrödinger equation, Hirota, and quintic equation 
with noisy (or other) inputs on the flat or elliptic background [1,2]. We discuss RWs strange nature, ingrained instability, dynamic generation, 
and potential applications. We propose the method of mode pruning for suppressing the modulation instability of rogue waves. We further 
demonstrate how to produce stable Talbot carpets (two dimensional patterns) of rogue waves. We also present statistical analysis [3] on rogue 
waves produced by various numerical algorithms using white noise as initial conditions. 
 

ENLSE: 

I.   Solutions on the uniform background 

Figure 2:  Dynamical propagation of ENLSE breathers from DT initial conditions. The 
(a) second-order breather with ν1=0.975, α=0.0625, γ=0.053, δ=0.043, (b) fourth-

order breather with ν1=0.969, α=-0.1625, γ=0.017, δ=0.006 

Figure 1:  Intensity distribution of the first-order breather. Top row: 
α spans from -0.1 to 0.1, γ=0, δ=0. Middle row: γ spans from -0.1 to 

0.1, α=0, δ=0. Bottom row: δ spans from -0.1 to 0.1, α=0, γ=0 
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Variables: x – evolutional, t – transversal. Real params: α, γ, δ. 

II.   Solutions on the nonuniform background 

III.   Double-periodic solutions and Talbot carpets 

(a) (b) 

Breather solutions are periodic along t-axis with frequency:   

Figure 3:  First-order breathers 
on the dn background with 

ν=0.75, α=0.13, γ=0.1, δ=-0.07: 
(a) m=0.752, (b) m=0.52. The 

breather period also depends on 
the background parameter m 

The period of the background 
dn elliptic waves:   

(a) 

(b) 

(a) (b) 

(c) (d) 

What happens when we match the periods of breather TB and background Tdn (q= TB / Tdn)? 
Figure 4:  2nd-order breather : (a) Unmatched case, q=3.17, yields single RW, (b) matched case, 
q=4, produces periodic RWs! The 3rd-order breather : (c) unmatched q=3.17, (d) matched q=4 

The pruning procedure is used to 
suppress the growth of unwanted Fourier 

modes during breather evolution. 
 

 Figure 5:  (a) Talbot carpet of NLSE 
(α=γ=δ=0), (b) Evolution of Hirota 

equation (α=0.2712, γ=δ=0) with modes 
pruning turned ON 

(a) 

(b) 

(a) 

(b) 

Figure 6:  
Components of the 
2nd-order breather 

are matched 
mutually and to 

the elliptic 
background wave 

with 
α=-0.03, γ=-0.0614, 

δ=0.7 
(a) m=0.1192, 

ν1=0.92, 
ν2=0.83, q=9, 

(b) m=0.0505, 
ν1=0.92, 

ν2=0.8104, q=8 

[3] S. Toenger, T. Godin, C. Billet, F. Dias, M. 
Erkintalo, G. Genty, J. M. Dudley, Sci. Rep. 5, 
10380 (2015). 
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Figure 7: NLSE intensity evolution seeded by white noise (5% amplitude) 
around the background intensity of 2. (a) Beam propagation method, 

(b) symplectic algorithm. Statistics of high intensity peaks for (a) and (b) 
is presented in (c) and (d), respectively.  


