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Abstract
This work is dedicated to the study of the weak probe pulse propagation through the medium containing semi-

conductor quantum dots with on-center hydrogen impurity. By adding two strong cw control lasers, the four-level
cascade light-matter coupling scheme can be formed, leading to the double-double electromagnetically induced
transparency. The temporal profile of the output probe pulse is calculated by solving Maxwell-Bloch equations,
with the help of the Fourier transform method. It is shown that the control field intensities can significantly affect
the group velocity of the probe pulse, therefore creating a very efficient slow light generation mechanism. These
results can be further applied to the fields of magnetometry, quantum telecommunications and quantum information
processing.

Introduction

Figure 1: The schematic depiction of the
SQD with the on-center hydrogen impurity.

Throughout the decades, a lot of attention has been
devoted to the study of the light manipulation, with
various applications in quantum optics and photon-
ics [1]. One prosperous application is slow light,
obtained by reducing the group velocity of light
by several orders of magnitude [2]. The tech-
nique largely used to achieve such an effect is
via the electromagnetically induced transparency
(EIT). This phenomenon allows the medium, pre-
viously opaque for the weak probe laser, to become
transparent in the presence of another, strong con-
trol field [3].

Typically, the EIT is obtained with two lasers.
However, adding another control field can lead to
the formation of two transparency windows, which
is called a double-double EIT [4]. In this work, this type of coupling is achieved by using the four-
level cascade scheme, with the levels of the GaAs spherical quantum dot (SQD) with the on-center
hydrogen impurity. Here, the charge carriers are confined in all three dimensions, and the discrete
atom-like energy structure is formed. Using semiconductor SQDs improves the implementation and
controllability of the experimental setup [5].

Theory
The energies and wave functions of the SQD (Fig. 1) can be found by using the variational Lagrange
mesh method (LMM), where the nodes of the mesh are the roots of shifted Legendre polynomials.
This is done by solving the Hamiltonian eigenproblem of the dot with the radiusR (in effective atomic
units, i.e. for m∗ = e = ~ = 4πε0εr = 1), with expanding the wave function Ψm as follows:
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where Vc = 0 for r ≤ R and Vc→∞ otherwise, while fi(r/R) are Lagrange functions [6].
The light–matter interaction Hamiltonian for the four-level cascade configuration (Fig. 2 (a)) under

the dipole and rotating-wave approximation in the co-rotating frame is:

H = ~
(
∆pσ22 + (∆p + ∆c)σ33 + (∆p + ∆c + ∆d)σ44 − (Ωpσ21 + Ωcσ32 + Ωdσ43 + c.c.)

)
, (2)

where σij ≡ |i〉 〈j|. Here, Ωs = dijEs/(2~) and ∆s = ωij − ωs are the Rabi frequency and detuning,
respectively, with different labels s, i, j for the probe (p, 2, 1), control (c, 3, 2) and additional control
field (d, 4, 3).

Figure 2: (a) The light–matter coupling scheme in the bare-state basis. (b) Dressed states of the SQD with ∆p = ∆c =
∆d = 0. (c) The schematic depiction of three laser fields and few lowest energy levels for the SQD with R = 81.76 nm.

The dynamics of the system is governed by the combination of Liouville and propagation equation
under the slowly-varying envelope approximation:
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which complete the system of Maxwell-Bloch equations (MBEs). Here, ρ is the density matrix,
ρij = 〈i| ρ |j〉, and the decoherence term Λρ contains (phenomenological) decay rates γij.

If the probe field is weak, the upper three levels are almost decoupled from the ground state |1〉.
Under the assumption ∆c + ∆d = 0, two strong fields modify the other levels as:

|0〉 = sin θ |2〉 − cos θ |4〉 ,

|+〉 = − cos θ sinφ |2〉 + cosφ |3〉 − sin θ sinφ |4〉 , tan θ =
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, tan 2φ =
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|−〉 = cos θ cosφ |2〉 + sinφ |3〉 + sin θ cosφ |4〉 ,
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√
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d. Together with |1〉, these states form the dressed-state basis (Fig. 2 (b)).
In the stationary regime, MBEs can be solved under the formalism of dressed states. If ∆c = ∆d = 0

(φ = π/4) and γij = γ, the absorption and dispersion curve (Imχ and Reχ, respectively, obtained by
calculating the susceptibility χ = Nd|d21|2ρ21/(ε0~Ωp)), are proportional to
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where (5) is the sum of three Lorentzian-shaped peaks, with their height depending on Ωc and Ωd.

Results
The LMM with N = 40 and L = 20 is used to obtain the energy level structure for the SQD with
R = 81.76 nm, which is given in Fig. 2 (c) (m∗ = 0.067m0 and εr = 12.9 for GaAs).

MBEs are solved by using the Fourier transform method (Fig. 3), with the initial conditions
ρ11(z, 0) = 1 and the remaining ρij(z, 0) = 0, while the initial Gaussian-shaped probe pulse is
Ep(0, t) = Ep0 exp

(
−w2(t− t0)2

)
. The other parameters are: Ep0 = 250 V/m, w = 20 GHz,

∆p = 1011 Hz, ∆c = ∆d = 0 and γ = 10 GHz. The number density of SQDs is Nd = 1021 m−3

and sample length is D = 200µm. The results are explained by analyzing the absorption and disper-
sion curve in the stationary regime (Fig. 4).

Figure 3: The temporal profile of the output probe pulse envelope for different values of the strength of the control fields.

Figure 4: The (a) absorption and (b) dispersion curve for the four-level cascade system with ∆c = ∆d = 0 and several
values of the strength of the control fields.

The group index ng = c/vg, relative pulse width δ = σout/σin, efficiency η = Wout/Win and fidelity
ξ = |S|/Win of the output pulse (Fig. 5) are calculated by using the expressions (zin = 0, zout = D):

〈tk〉in,out =

∫ ∞
0

tk|Ep(zin,out, t)|2 dt, S =

∫ ∞
0

E∗p

(
0, t− D

vg

)
Ep(D, t) dt, (7)

from which we have vg = D/(〈t〉 − t0), σin,out =
√
〈t2〉in,out − 〈t〉2in,out and Win,out = 〈t0〉in,out.

Figure 5: The output pulse parameters as functions of the Rabi frequency of the (a–d) control field and (e–h) additional
control field. The values of Ωc and Ωd used in the previous figures are given in green dashed lines.

Conclusions
•As a consequence of the EIT effect in the three-level cascade scheme, the probe light in GaAs

SQDs can be slowed down a few dozen times, as shown in the previous work [6].
•Applying the additional control field results in the formation of the middle absorption peak and two

transparency windows instead of one, with the peak position and height depending on Ωc and Ωd.
• The connection between (5) and (6) implies that the realization of slow light (for probe detunings

where the dispersion curve has a negative slope) is possible in the double-double EIT regime.
• From Fig. 5 (e) it follows that, for large Ec/Ep0, ng increases with the increase of Ωd – the addi-

tional control field can reduce vg by one order of magnitude comparing to the three-level case.
• Finding the right balance between ng and η is of a great importance for future applications of

semiconductor quantum dots as optical switches and optical buffers.
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