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Influence of data scaling and normalization on overall neural network pertformances in photoacoustics

.1 K.Lj. Djordjevic!, M.I. Jordovié-Pavlovi¢?, Z.M. Cojbasié3, S.P. Galovié!,
& ﬁ M.N. Popovié¢!, M.V. Nesi¢!, D.D. Markushev?

YWniversity of Belgrade, Vinca Institute of Nuclear Sciences - National Institute of the Republic of
Serbia, Belgrade, Serbia
2 Western Serbia Academy of Applied Studies, UzZice, Trg Svetog Save 34, Uzice, Serbia
SUniversity of Nis, Faculty of Mechanical Engineering, Nis, Serbia
20y >University of Belgrade, Institute of Physics Belgrade - National Institute of the Republic of Serbia,
nstitut za nu.klvearne Belgmde = Zemun, Serbia
. e-mail: katarinaljdjordjevic(@gmail.com

In our previous articles [1,2] we have shown that the application of artificial neural networks (ANNSs) 1n photoacoustics could improve experimental procedures 1n many ways: better
accuracy and precision 1n investigated sample parameters prediction, better control of the experimental conditions together with approaching to the real-time characterization of the
investigated sample, etc. Here we will try to show why the different types of scaling and normalization procedures could be beneficial to the accuracy, precision and numerical stability
of the network predicted parameters and network training speed. To do that numerical (Fig.1) or logarithmic scaling and min-max and max normalizations are applied on experimental
input data used in the ANNs training process. At the same time, specific numerical scaling 1s used for network output data (predicted sample thermal and geometric parameters such as
thermal diffusivity, linear coefficient of thermal expansion, thickness) to find possible benefits to ANNs performances. Our analysis of training, stability, and accuracy of network
prediction will rely on the ANNSs trained with or without scaling and/or normalization to find their influence on overall network performances.

Table 1. Training performance of two neural networks. The first with non-scaled output, Fig. 1. Numerically scaled a) amplitudes and b) phases of the photoacoustic signals used
the second with normalized output as an mput data for network training base formation in frequency domain aimed for

“electronic parameters calculations.

Type of NN Performance

non-scaled output

scaled output 0.000037822; 1000 epochs;

Table 2. Maximal and average (%) relative error of two neural net

[
<
\O)

scaled output layer data.

average (%) relative error

11.8496 |7.2159 10.4632 |3.9795 [1.7724 10.0632

Type of NN max (%) relative error
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ok
<
N

Normalization Amplitudes
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non-scaled output

102 103 10*
Modulation frequency f|

normalized output

relaative errors, for parameters thermal diffusivity,

ps of amplitudes of photoacoustic signal: (21) amplitudes

Table 3. Maximal and average (%) relative error of two neural : .
d (3) amplitudes thickness from 100 to 200 mm.

scaled output layer data in signal prediction of randomly selecte

Type of NN
of changes of parameters.

max (%) relative error |average (%) relative error
non-normalization 21

0.8021
non-normalization 3
non-normalization on 1 21

non-normalizationon 1 3

logarithmic normalization21 [0.2098 [0.5113 (0.1928 10.4423 0.3626 |0.4731

logarithmic normalization

3
max normalization 21

max normalization 3

min-max normalization 21

min-max normalization 3

Type of NN max (%) relative error

parameters

average (%) relative error

Table 4. Parameter prediction Dy, a, and [, of amplitude neural ne

non-scaled output

scaled output

outputs and with normalized outputs on experimental photoacoustic

error of prediction of parameters of individual samples 1s given. Sai

sample no. 2 1s 417 um and 3 1s 128 um.

Rel error (%) Sample no.1 Sample no.2 Sample no. 3

non-scaled output

Table 8. Relative (%) errors of parameters prediction Dy, a7 and [

of experimental signals by neural networks with different normalized amplitude bases:
without normalization, logarithmic normalization, normalization to the maximum value
and min-max normalization. Results are shown on three samples: the sample

no.1 has 830 mm, sample no.2 has 417 mm and sample no.3 has 128 mm.

0.6556 [0.3590 10.0133 10.6035 [0.9553 |0.0831{1.9162 |1.6576|2.1096

Table 5. Performance of amplitude neural networks with different normalizations.
yochs Rel. error% Sample no.1 Sample no.2 Sample no. 3

Type of normalization Performance, number of e
non-normalization parameters

non-normalizationon 1 |0.00015258 at 240 epoch no-norm 0.0555 10.0421 (0.0111 [0.1290 |0.0263 10.0592 |11.70655.7570|11.5476

logarithmic normalization TR L]

max normalization 00000041402 log norm

min-max normalization max norm
Table 6. Maximal and average (%) relative error of independent test of extracted amplitudes of
min-max norm | 0.0366 | 0.0489 | 0.0188 | 0.0651 | 0.01246 | 0.0031 | 2.3220 |0.3906| 3.1880

photoacoustic signals before training neural networks.

Type of normalization max relative error % | average relative % error |
parameters
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non-normalization on 1

logarithmic normalization 0.3472 10.2289 [0.3882 [0.0661 |0.0729 10.0679

max normalization

min-max normalization 0.0322 10.0770 ]0.0605 [0.0068 [0.0185 [0.0084
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