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Abstract

We study the effects of the dipole-dipole interaction
on the ground state and collective modes of quasi-
one-dimensional dipolar Bose-Einstein condensates
of the atomic gas of erbium 168Er. Through ex-
tensive numerical simulations and detailed varia-
tional treatment, we analyze the dependence of
condensate widths on the dipole-dipole interaction
strength, as well as the interaction-induced fre-
quency shifts of collective oscillation modes. Fur-
thermore, we show that the Gaussian variational
approach gives a good qualitative description of the
system’s ground state, and an excellent quantitative
description of the condensates’ low-lying excitation
modes.

Parameters of the system

Condensate is confined into a cigar-shaped harmonic
trap [1] ωx = 7× 2π Hz, ωy = ωz = 160.5× 2π Hz

All simulations [2, 3] and calculations are performed with
the same number of atoms N = 104

Spatial discretization mesh Nx = Ny = Nz = 500, with
different spacings ∆x = 0.5, ∆y = ∆z = 0.1 corresponds
to the simulation box of the volume 250× 50× 50µm3

Time discretization Nt = 105, with time step ∆t = 10−3

corresponds to the simulation of the evolution 1000 ms

Whenever one of the interaction strengths has a fixed
value, we use the data for 168Er: as = 100 a0 and
add = 67 a0

Variational description of the dipolar Bose gas in a trap

Gross-Pitaevskii equation for dipolar BECs has two types of nonlinearities due to the two types of interactions: the contact and the dipole-dipole interaction
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The dimensionless dipolar Gross-Pitaevskii equation can be written as the Euler-Lagrange equation for the following Lagrangian density
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We use the Gaussian ansatz with six variational parameters {ui, φi}, which are functions of time and represent the condensate widths and conjugated phases, respectively
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The Euler-Lagrange equations for the condensate widths ui can be expressed in terms of the anisotropy function f [4], and its partial derivatives fi(x1, x2) = ∂f (x1, x2)/∂xi

L =
∫
drL , d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 , qi ∈ {ux, uy, uz, φx, φy, φz} =⇒
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Ground state

Ground state equations are obtained by assuming üx = üy = üz = 0

Widths are defined as two times the root-mean-square of the corresponding coordinate
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Conclusions

Variational description of dipolar BECs

Numerical solution of the dipolar Gross-Pitaevskii equation

Good qualitative description of the system’s ground state

Excellent quantitative description of the condensate’s low-lying excitation modes

This research was funded by the Ministry of Education, Science, and Technological Devel-
opment of the Republic of Serbia under project ON171017. Numerical calculations were
run on the PARADOX supercomputing facility at the SCL of the IPB.

Collective modes

The system is perturbed from the ground state by a small change of one of its parameters

ui(t) = ui0 + δui(t) , i ∈ {x, y, z}
Coupled system of ordinary linear differential equations of the second order

δü(t) + M · δu(t) = 0 , Mij = −2
∂2L(u)

∂ui ∂uj

∣∣∣∣∣
u=u0

, i, j ∈ {x, y, z}

The collective mode frequencies are eigenvalues of the matrix M

det(M − ω2I) = 0
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