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Motivation

Drift-diffusion model
Continuity equations:

Poisson’s equation:

Boundary condition:Boundary condition:

• ϕ - electrostatic 
potential

• q - elementary 

charge,
• n and p - electrons 

and holes densities
• Dn and Dp -

electron and hole 
diffusion 
coefficients

• G is generation 

term described by 
Beer-Lambert law

The system of 
equations was 
solved with use 
of the finite 
difference 
discretization 
improved by 
Scharfetter and 
Gummel 
approach and 
the Newton 
algorithm.

• Φn and Φp – injection barrier heights of holes and 

electrons respectively
• 𝒏𝒕𝒉

𝒂 and 𝒏𝒕𝒉
𝒄 - thermionic charge carrier densities of 

electrons at anode and cathode respectively
• 𝒑𝒕𝒉

𝒂 and 𝒑𝒕𝒉
𝒄 - thermionic charge carrier densities of 

holes at anode and cathode respectively
• Nc and Nv – effective density of states

• Eg – energy gap

• 𝑹 = 𝝃
𝒒

𝜺

𝝁𝒏+𝝁𝒑

𝟐
-

reduced 
Langevin 
recombination 
rate

• ξ – reduction 

factor
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Fig. 1. J-V curves simulated for different hole injection barriers
using DDM with included transport layers.

Fig. 2. J-V curves simulated for different electron injection 
barriers using DDM with included transport layers.

Fig. 3. Simulated J-V curves for the structure without transport layers 
using zero and realistic injection barrier values in the DDM compared to 
the measured J-V curve.

Fig. 4. Simulated J-V curves for the structure with transport layers 
using zero and realistic injection barrier values in the DDM compared to 
the measured J-V curve.

Theoretical explanations needed!
Comprehensive drift-diffusion model (DDM) should be 
developed
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 A simple way of including transport layers in the DDM is presented – each layer (HTL, AL and ETL) is described with its 
electrical and optical parameters. Hole and electron injection barriers are considered.

 Model validation 1. J-V curve simulations show expected trends with changing hole/electron injection barriers.
 Model validation 2. Simulated J-V curves of ITO/P3HT:PCBM/Al device (structure without transport layers) reproduce the 

experiment well when realistic values of hole/electron injection barriers are applied in the DDM. 
 Model validation 3. Simulated J-V curves of ITO/PEDOT:PSS/P3HT:PCBM/LiF/Al (sturcture with transport layers) show 

excellent agreement with experiment when zero hole/electron injection barriers are used in the DDM – this confirmes 
electrodes Fermi level pinning. 

• ε – permittivity
• μn and μp - electron and 

hole mobilities
• α – absorption coefficient

Results


