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ABSTRACT PARAMETERS OF THE SYSTEM

We study the effects of the dipole-dipole interaction e Condensate is confined into a cigar-shaped harmonic 12
on the ground state and collective modes of quasi- trap [1] w, = 7 x 27 Hz, w, = w, = 160.5 x 27 Hz

one-dimensional dipolar Bose-Einstein condensates
of the atomic gas of erbium '®®Er. Through ex-
tensive numerical simulations and detailed varia-
tional treatment, we analyze the dependence of
condensate widths on the dipole-dipole interaction

strength, as well as the interaction-induced fre- 5 3
quency shifts of collective oscillation modes. Fur- e Time discretization Ny = 10°, with time step At = 107
thermore, we show that the Gaussian variational corresponds to the simulation of the evolution 1000 ms

o All simulations |2, 3] and calculations are performed with
the same number of atoms N = 10

e Spatial discretization mesh N, = N, = N, = 500, with
different spacings Az = 0.5, Ay = Az = 0.1 corresponds
to the simulation box of the volume 250 x 50 x 50 pm?

approach gives a good qualitative description of the e Whenever one of the interaction strengths has a fixed
system’s ground state, and an excellent quantitative value, we use the data for Er: a, = 100qay and
description of the condensates’ low-lying excitation aqq = 07 ay

modes.

VARIATIONAL DESCRIPTION OF THE DIPOLAR BOSE GAS IN A TRAP

o (Gross-Pitaevskil equation for dipolar BECs has two types of nonlinearities due to the two types of interactions: the contact and the dipole-dipole interaction
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e The dimensionless dipolar Gross-Pitaevskii equation can be written as the Euler-Lagrange equation for the following Lagrangian density
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e We use the Gaussian ansatz with six variational parameters {u;, ¢;}, which are functions of time and represent the condensate widths and conjugated phases, respectively
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e The Euler-Lagrange equations for the condensate widths u; can be expressed in terms of the anisotropy function f [4|, and its partial derivatives f;(x1, x2) = Of (21, x2)/0x;
i = o — anf (2.) +autsh (2 3)] = 0
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COLLECTIVE MODES

(FROUND STATE

e Ground state equations are obtained by assuming u, = u, = t, = 0 e The system is perturbed from the ground state by a small change ot one of its parameters

o Widths are defined as two times the root-mean-square of the corresponding coordinate wi(t) = w4+ ou(t), 1 €{x,y,z}
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| | I e Coupled system of ordinary linear differential equations of the second order
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20 M L0 W b e aasssassasast The collective mode frequencies are eigenvalues of the matrix M
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e Variational description of dipolar BECs
e Numerical solution of the dipolar Gross-Pitaevskii equation
e Good qualitative description of the system’s ground state
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