PHOTOPHORESIS-BASED LASER TRAPPING WITH A LINE OPTICAL TRAP

Alexey P. Porfirev, Sergey A. Fomchenkov
Samara National Research University, Samara, Russia

SAMARA NATIONAL RESEARCH UNIVERSITY,
443086, 34, Moskovskoye shosse, Samara, Russia
www.ssau.ru
e-mail. lporfirev@rambler.ru

The phenomenon of photophoresis in gases

Radiation

Gas molecules

Fast

Force

Slow

Warm

Cold

Force

Direct photophoresis
Rejection of particles via transferred photon impulses

Indirect positive (thermo-) photophoresis (for strongly absorbing particles)
Rejection of particles via excited gas molecules after warming due to light absorbing photon impulses

Indirect negative (thermo-) photophoresis (for weakly absorbing particles)
Resulting force in opposite direction because of transmitted and focussed light in semi-transparent particles

Direct photophoresis
Rejection of particles via transferred photon impulses

Indirect positive (thermo-) photophoresis (for strongly absorbing particles)
Rejection of particles via excited gas molecules after warming due to light absorbing photon impulses

Indirect negative (thermo-) photophoresis (for weakly absorbing particles)
Resulting force in opposite direction because of transmitted and focussed light in semi-transparent particles

Trapping airborne light-absorbing particles with a single optical beam

\[F = G + R + F_{\text{ppT}} + F_{\text{ppa}} \]

- **G** is the gravity,
- **R** is the radiation force,
- \(F_{\text{ppT}} \) is the photophoretic force,
- \(F_{\text{ppa}} \) is a photophoretic force resulting from a temperature gradient,
- \(F_{\text{ppa}} \) is a photophoretic force resulting from a different thermal accommodation coefficient \(\alpha \)

Experimental setup for generating a line optical trap

- **Laser** is a solid-state laser (\(\lambda = 532 \text{ nm} \))
- \(L_1 \) and \(L_2 \) are the spherical lenses (\(f_1 = 50 \text{ mm}, f_2 = 100 \text{ mm} \))
- **M** is a mirror,
- \(L_3 \) is a cylindrical lens (\(f_3 = 25 \text{ mm} \))
- **MO** and **MO** are the microobjectives (\(N_A = 0.4, 20^\circ \), \(N_A = 0.2, 8^\circ \))
- **C** is a glass cell with airborne particles,
- **CCD** is a videocamera.

Experimental results: controlled rotating airborne particles

Rotation of the cylindrical lens around the axis leads to the rotation of the particles, which were trapped inside the line optical trap at a distance from its central part. At the same time, the particles trapped in the line optical trap on the beam axis did not rotate.

This work was partially funded by the Ministry of Education and Science of the Russian Federation and Russian Federation Presidential grants for support of young candidates of sciences (MK-2390.2017.2), and Russian Foundation for Basic Research grant No. 17-42-630008.