DEEP LEARNING BASED CLASSIFICATION OF HIGH INTENSITY LIGHT PATTERNS IN PHOTOREFRACTIVE CRYSTALS

A. Mančić¹, M. Ivanović², C. Hermann-Avigliano³, Lj. Hadžievski² and A. Maluckov²

1. Faculty of Sciences and Mathematics, University of Niš, Serbia

2. Vinča Insitute of Nuclear Sciences, University of Belgrade, Serbia

3. Dept. De Fisica and Millennium Institute for research in Optics, Facultad de Ciencias and Facultad de Ciencias Fisicas y Matematicas, Universidad de Chile, Chile

Rogue waves (RWs) or extreme events have been in the focus of interest in diverse fields of science since the middle of the last century [1]. Here, we establish a new scheme for identification and classification of high intensity events generated by the propagation of light through a photorefractive SBN crystal [2]. Speckling and soliton-like patterns are among these events which are the inevitable consequence of the development of modulation instability. We implement the convolution neural network method to relate experimental data of light intensity distribution and corresponding numerical profiles. The accuracy of detection of speckles reaches maximum value of 100%, while the accuracy of solitons and caustic detection is above 97%. These performances are promising for the creation of neural network based routines for prediction of extreme events in wave media.

RWs are rare, highly intense, spatially localized and temporally transient structures in complex systems (oceans, optics, biological systems, mater waves, social sciences). We explored their appearance in a SBN photorefractive crystal and found a variety of output light intensity patterns [2].

ш

utput intensity

profiles

Classes of output profiles/regimes: (a) Dispersion-like (no RWs) (b) Caustic-like (c) Soliton-like (d) Speckling

Model equation of the light propagation through the crystal with local saturable nonlinear term [3]:

 $i\frac{\partial}{\partial z}\psi(x,y,z) + \beta\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right)\psi(x,y,z) - g\frac{\psi(x,y,z)}{1 + |\psi(x,y,z)|^2}$

White and black color corresponds to the lowest and highest intensity, respectively (grayscale form 0 (min) to 255 (max intensity))

Stride/droput

Kernel

Activation

 $\Psi(x,y,z)$ - the envelope of the electric field, x and y - transverse crystal sample lengths, z the propagation coordinate and g - nonlinear parameter. The initial conditions and the external voltage \rightarrow related to g.

The light experiences different regimes, corresponding to those identified at the output crystal facet in the experiment.

<u>Goal</u>: To implement the convolution neural network (CNN) [4] to previously obtained experimental and numerical data for distinguishing regimes with different types of high intensity events.

Results

NN classification performances: class accuracy (Acc), sensitivity (Sen), specificity (Spec):

$$Acc = \frac{TP + TN}{TP + TN + FP + FN}$$
 $Sen = \frac{TP}{TP + FN}$ $Spec = \frac{TN}{TN + FP}$

TP, TN, FP and FN - true positives, true negatives, false positives and false negatives

Training set overall Acc for optimal CNN architecture (Table 1):

Theoretical (97.55 ± 1.41) %; Experimental (99.76 ± 0.76) %; Combined (98.69 ± 1.19) % (mean ± standard deviation of 10 fold cross-validation).

The same network is used for evaluating the network performances on the blindfolded test sets of experimental and theoretical data separately as well as combined.

CNN architecture and training

Q: Why deep learning (DL)?

A: Standard statistical methods and measures are related to the determination of the RW threshold by criteria based on the observation - approximate and not unique. The DL offers a tool for going beyond these limits.

The key: Representative and well balanced dataset to allow to choose optimal NN architecture and to read and interpret decision results.

Our network architecture: 3-stage feature extractor along with a fully connected multi-layer perceptron

Input	layer

		Table 1. T	he details of the	e optimal net	work archi	tecture; b deno	otes mini-
CONV+ReLU			batch si	ze.			
		Laver type	Output shape	# of	Kernel	Stride/droput	Activation

(MLP) [5]

acto	Max Pooling		o aspat onapo	parameters	size	rate	
extra	CONV+ReLU	Input	(b,512,512,1)	0	-	-	-
re	Max Pooling	CONV	(b,508,508,32)	832	5x5	1	ReLU
eatu		MaxPolling	(b,127,127,32)	0	4x4	4	-
щ	CONV+RELO	CONV	(b,123,123,64)	51264	5x5	1	ReLU
	Max Pooling	MaxPolling	(b,30,30,64)	0	4x4	4	-
		CONV	(b,26,26,64)	102464	5x5	1	ReLU
	Flatten	MaxPolling	(b,13,13,64)	0	2x2	2	-
MLP	Dense	Flatten	(b,10816)	0	-	-	-
	Dense	Dense	(b,1024)	11076608	-	-	ReLU
	Dropout	Dropout	(b,1024)	0	-	0.4	-
	Softmax	Dense	(b,4)	4100	-	-	softmax

Sample set: 1041 (experimental) and 969 (numerically) generated intensity profiles

The architecture design, Training set (80%) model hyperparameters, evaluation Numerical datasets (10-fold cross-validation) Testing set (20%) Numerical + Training set (80%) Training set (80%) Experimental datasets < **Experimental** Testing set (20%) Testing set (20%) datasets

* Each class is more or less equally represented in the sample set *

Training set: 1608	Test set: 402
Exp: 833 🔶 228 No RW	Exp: 208 🚽 🗲 53 No RW
🔺 209 Speckling	🔺 49 Speckling
🔪 218 Caustic	🔪 62 Caustic
178 Soliton	🎽 44 Soliton
Theory: 775 💦 > 228 No RW	Theory: 194 🔶 48 No RW

Theory		Predicted					Exporimontal		Predicted			
		noRW	speckling	caustic	soliton		Experimental		noRW	speckling	caustic	solito
UE	noRW	48	0	0	0		I IIII	noRW	52	0	1	0
	speckling	0	65	0	0			speckling	0	49	0	0
TR	caustic	0	0	35	0		TR	caustic	0	0	62	0
	Soliton	0	0	12	34			Soliton	0	0	0	44

Theory & Experimental		Predicted						
		noRW	noRW speckling causti					
	noRW	100	0	1	0			
TRUE	speckling	0	114	0	0			
	caustic	0	0	97	0			
	Soliton	0	0	9	81			

Best approach: CNN analysis on the mix of both experimental and theoretical datasets

Table 3. Performance metrics of the test datasets (%):

Metrics test set	Theory	Experiment	Theory & experiment
Overall Acc	93.81	99.52	97.51
Acc no RW	100.00	99.52	99.75
Acc speckling	100.00	100.00	100.00
Acc caustic	93.81	99.52	97.51
Acc soliton	93.81	100.00	97.76
Sen no RW	100.00	98.11	99.01
Sen speckling	100.00	100.00	100.00
Sen caustic	100.00	100.00	100.00
Sen soliton	73.91	100.00	90.00
Spe no RW	100.00	100.00	100.00
Spe speckling	100.00	100.00	100.00
Spe caustic	92.45	99.32	96.72
Spe soliton	100.00	100.00	100.00

- This research is as a step ahead towards the implementation of deep learning methods for the investigation and prediction of the extreme events.
- The CNN architecture consisting of the 3-stage feature extractor and a fully connected multi-layer perceptron is applied in order to classify different high intensity profiles generated experimentally and numerically
- The model performances are evaluated on the blindfolded test set
- CNN based detector and classifier has satisfying performances

Acknowledgment: This research is supported by the Ministry of education, Sciences and Technological Development of Serbia (Project No. III 45010), Programa ICM Millennium Institute for Research in Optics (MIRO), U-Inicia VID Universidad de Chile (UI 004/2018), Comisión Nacional de Investigación Cientifica y Technológica (CONICYT PAI Grant 77180003) and from the European Union's Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement No 691051.

References:

[1] M. Onorato et al., Phys. Report 528, 47 (2013). [2] C. Hermann-Avigliano et al., Opt. Lett. 44, 2807 (2019). [3] R. Alio et al., J. Opt. 17, 025101 (2015). [5] https://keras.io/layers/core [4] Y. LeCun et al., Nature 521, 436 (2015)