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Rogue waves (RWs) or extreme events have been in the focus of interest in diverse fields of science since the middle of the last century [1]. Here, we establish a new scheme

for identification and classification of high intensity events generated by the propagation of light through a photorefractive SBN crystal [2]. Speckling and soliton-like patterns

are among these events which are the inevitable consequence of the development of modulation instability. We implement the convolution neural network method to relate

experimental data of light intensity distribution and corresponding numerical profiles. The accuracy of detection of speckles reaches maximum value of 100%, while the

accuracy of solitons and caustic detection is above 97%. These performances are promising for the creation of neural network based routines for prediction of extreme

events in wave media.
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• This research is as a step ahead towards the implementation of deep learning methods for the investigation and prediction of the extreme events.

• The CNN architecture consisting of the 3-stage feature extractor and a fully connected multi-layer perceptron is applied in order to classify different high intensity 

profiles generated experimentally and numerically

• The model performances are evaluated on the blindfolded test set

• CNN based detector and classifier has satisfying performances

RWs are rare, highly intense, spatially localized and temporally transient structures in complex

systems (oceans, optics, biological systems, mater waves, social sciences). We explored their

appearance in a SBN photorefractive crystal and found a variety of output light intensity patterns [2].

Goal: To implement the convolution neural network (CNN) [4] to previously obtained

experimental and numerical data for distinguishing regimes with different types of high

intensity events.

* White and black color corresponds

to the lowest and highest intensity,

respectively (grayscale form 0 (min) to

255 (max intensity))

Model equation of the light propagation through the crystal with local saturable nonlinear term [3]:
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Ψ(x,y,z) - the envelope of the electric field, x and y - transverse crystal sample lengths, z the

propagation coordinate and g - nonlinear parameter. The initial conditions and the external voltage→

related to g.

The light experiences different regimes, corresponding to those identified at the output crystal facet in

the experiment.

CNN architecture and training

Q: Why deep learning (DL)?

A: Standard statistical methods and measures are related to the determination of the RW threshold by

criteria based on the observation - approximate and not unique. The DL offers a tool for going beyond

these limits.

The key: Representative and well balanced dataset to allow to choose optimal NN architecture

and to read and interpret decision results.

Layer type Output shape # of 

parameters

Kernel 

size

Stride/droput

rate

Activation

Input (b,512,512,1) 0 - - -

CONV (b,508,508,32) 832 5x5 1 ReLU

MaxPolling (b,127,127,32) 0 4x4 4 -

CONV (b,123,123,64) 51264 5x5 1 ReLU

MaxPolling (b,30,30,64) 0 4x4 4 -

CONV (b,26,26,64) 102464 5x5 1 ReLU

MaxPolling (b,13,13,64) 0 2x2 2 -

Flatten (b,10816) 0 - - -

Dense (b,1024) 11076608 - - ReLU

Dropout (b,1024) 0 - 0.4 -

Dense (b,4) 4100 - - softmax

Our network architecture: 3-stage feature extractor along with a fully connected multi-layer perceptron

(MLP) [5] 

Table 1. The details of the optimal network architecture; b denotes mini-

batch size. 

Sample set: 1041 (experimental) and 969 (numerically) generated intensity profiles

Numerical datasets
Training set (80%)

Testing set (20%)

Experimental datasets
Training set (80%)

Testing set (20%)

Numerical +

Experimental

datasets

Training set (80%)

Testing set (20%)

The architecture design,

model hyperparameters, evaluation

(10-fold cross-validation) 

Scheme of the dataset content

* Each class  is more or less equally represented in the sample set *

Results

NN classification performances: class accuracy (Acc), sensitivity (Sen), specificity (Spec):

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
𝑆𝑒𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝑆𝑝𝑒𝑐 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃

TP, TN, FP and FN - true positives, true negatives, false positives and false negatives

Theory
Predicted

noRW speckling caustic soliton

T
R

U
E

noRW 48 0 0 0

speckling 0 65 0 0

caustic 0 0 35 0

Soliton 0 0 12 34

Experimental
Predicted

noRW speckling caustic soliton

T
R

U
E

noRW 52 0 1 0

speckling 0 49 0 0

caustic 0 0 62 0

Soliton 0 0 0 44

Theory &

Experimental

Predicted

noRW speckling caustic soliton

T
R

U
E

noRW 100 0 1 0

speckling 0 114 0 0

caustic 0 0 97 0

Soliton 0 0 9 81

Metrics test set Theory Experiment
Theory & 

experiment

Overall Acc 93.81 99.52 97.51

Acc no RW 100.00 99.52 99.75

Acc speckling 100.00 100.00 100.00

Acc caustic 93.81 99.52 97.51

Acc soliton 93.81 100.00 97.76

Sen no RW 100.00 98.11 99.01

Sen speckling 100.00 100.00 100.00

Sen caustic 100.00 100.00 100.00

Sen soliton 73.91 100.00 90.00

Spe no  RW 100.00 100.00 100.00

Spe speckling 100.00 100.00 100.00

Spe caustic 92.45 99.32 96.72

Spe soliton 100.00 100.00 100.00

Training set overall Acc for optimal CNN architecture (Table 1): 

Theoretical  (97.55 ± 1.41) %; Experimental (99.76 ± 0.76) % ;Combined  (98.69 ± 1.19) %

(mean ± standard deviation of 10 fold cross-validation).  

The same network is used for evaluating the network performances on the blindfolded test sets 

of experimental and theoretical data separately as well as combined.

Table 2. Model performances evaluated on the blindfolded test dataset – confusion matrices:

Best approach: CNN analysis on the mix of both experimental and theoretical datasets

Table 3. Performance metrics of the test datasets (%):

Classes of output profiles/regimes:

(a) Dispersion-like (no RWs)

(b) Caustic-like

(c) Soliton-like

(d) Speckling


