Electron-plasmon Scattering in Doped Graphene

J. Jakovac¹

¹Institut za fiziku, Zagreb, Croatia'
e-mail: jjakovac@ifs.

Decay mechanisms and plasmon satellites formed in the spectrum of a photo-excited hole in doped graphene is a phenomenon that has been investigated for a long time using Angle Resolved Photo-Emission Spectroscopy (ARPES) measurements [1–3]. The results I will present are produced by the ab-initio simulation of photo-emission spectra in electrostatically and chemically (KC₈) doped graphene, in the framework of our recently developed many-body RPA- G_0W_0 approximation. The decay width along the graphene π^+/π^- bands at the Fermi level features the exponential law $\Gamma^-|E_{\sigma,\pi K}^- - E_{Fermi}^-|^{\alpha}$ (**Fig. 1a**), which perfectly fits the previous experimental results [1, 4], deviating from the standard Fermi liquid behavior $\alpha=2$. At lower energies, the width of the π^+/π^- bands exhibits a peak due to the Dirac plasmon emission decay, also experimentally measured [1]. On the other hand, the plasmonic satellites appearing in the spectrum (**Fig. 1b**) feature much lower intensities than experimentally obtained [2, 3], except in the $E_{Dirac} < \omega < E_{Fermi}$ frequency range. Also, due to the Fermi liquid theory, we obtained a kink at the Fermi level in highly doped graphene (**Fig. 1b**).

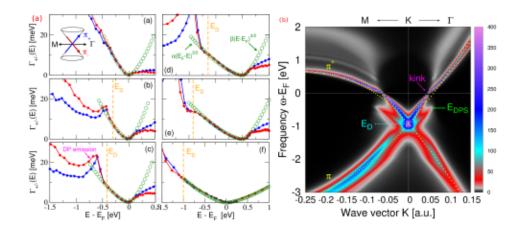


Figure 1. **a)** The imaginary part of self-energy along π^+/π^- bands in electrostatically doped [witt concentrations increasing (a) \rightarrow (e)] and chemically (f) doped KC₈ graphene. **b)** The simulation of spectral intensity along the high symmetry path (M \leftarrow K \rightarrow Γ) in electrostatically highly doped graphene (10 ¹⁴ cm⁻²).

REFERENCES

- [1] A. Bostwick, T. Ohta, T. Seyller, K. Horn and E. Rotenberg, Nature Phys. 3, 36 (2007).
- [2] H. Zhang, S. Wang, E. Wang, et al, npj Quantum Mater. 6, 83 (2021).
- [3] A. Bostwick, F. Speck, T. Seyller et al, Science 328, 999 (2010).
- [4] J. Jakovac and V. Despoja, Phys. Rev. B 110, 195425 (2024).